Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Journal of Korean Neurosurgical Society ; : 204-214, 2022.
Article in English | WPRIM | ID: wpr-926028

ABSTRACT

Objective@#: Osteoporosis result from age-related decline in the number of osteoblast progenitors in the bone marrow. Probiotics have beneficial effects on the host, when administered in appropriate amounts. This study investigated the effects of probiotics expressing specific genes, especially the effects of genetically modified bone morphogenetic protein (BMP)-2-expressing Lactobacillus plantarum CJNU 3003 (LP) on ovariectomized rats. @*Methods@#: Twenty-eight female Wistar rats (250–300 g, 12 weeks old) were divided into four groups : the sham (control), the ovariectomy (OVX)-induced osteoporosis group (OVX), the OVX and LP (OVX/LP), OVX and genetically modified BMP-2-expressing LP (OVX/LP with BMP) groups. The three groups underwent bilateral OVX and two of these groups were administered two different types of LP via oral gavage daily. At 16 weeks post-OVX, blood was collected from the heart and the bilateral tibiae were extracted and were scanned by ex-vivo micro-computed tomography and stained with hematoxylin-and-eosin (H&E) and Masson’s trichrome stain for pathological assessment. The serum levels of osteocalcin (OC), rat C-telopeptide of type I collagen (CTX-I), BMP-2, and receptor activator of nuclear factor-ĸB ligand (RANKL) were measured. @*Results@#: The 3D-micro-computed tomography images showed that the trabecular structure in the OVX/LP with BMP group was maintained compared with OVX and OVX/LP groups. No significant differences were detected in trabecular thickness (Tb.Th) between control and OVX/LP with BMP groups (p>0.05). Furthermore, a tendency toward increased BMD, trabecular bone volume, Tb.Th, and trabecular number and decreased trabecular separation was found in rats in the OVX/LP with BMP groups when compared with the OVX and OVX/LP groups (p>0.05). The H&E and Masson’s trichrome stained sections showed a thicker trabecular bone in the OVX/LP with BMP group compared with the OVX and OVX/LP groups. There was no difference in serum levels of OC, CTX and RANKL control and OVX/LP with BMP groups (p>0.05). In contrast, significant differences were found in OC and CTX-1 levels between the OVX and OVX/LP with BMP groups (p<0.05). @*Conclusion@#: Our results showed that the expression of genetically modified BMP-2 showed inhibition effect for bone loss in a rat model of osteoporosis.

2.
Korean Journal of Pediatrics ; : 165-175, 2013.
Article in English | WPRIM | ID: wpr-56559

ABSTRACT

PURPOSE: There was a global increase in the prevalence of oseltamivir-resistant influenza viruses during the 2007-2008 influenza season. This study was conducted to investigate the occurrence and characteristics of oseltamivir-resistant influenza viruses during the 2007-2008 and 2008-2009 influenza seasons among patients who were treated with oseltamivir (group A) and those that did not receive oseltamivir (group B). METHODS: A prospective study was conducted on 321 pediatric patients who were hospitalized because of influenza during the 2007-2008 and 2008-2009 influenza seasons. Drug resistance tests were conducted on influenza viruses isolated from 91 patients. RESULTS: There was no significant difference between the clinical characteristics of groups A and B during both seasons. Influenza A/H1N1, isolated from both groups A and B during the 2007-2008 and 2008-2009 periods, was not resistant to zanamivir. However, phenotypic analysis of the virus revealed a high oseltamivir IC50 range and that H275Y substitution of the neuraminidase (NA) gene and partial variation of the hemagglutinin (HA) gene did not affect its antigenicity to the HA vaccine even though group A had a shorter hospitalization duration and fewer lower respiratory tract complications than group B. In addition, there was no significant difference in the clinical manifestations between oseltamivir-susceptible and oseltamivir-resistant strains of influenza A/H1N1. CONCLUSION: Establishment of guidelines to efficiently treat influenza with oseltamivir, a commonly used drug for treating influenza in Korean pediatric patients, and a treatment strategy with a new therapeutic agent is required.


Subject(s)
Child , Humans , Drug Resistance , Hemagglutinins , Hospitalization , Influenza, Human , Inhibitory Concentration 50 , Neuraminidase , Orthomyxoviridae , Oseltamivir , Prevalence , Prospective Studies , Respiratory System , Seasons , Viruses , Zanamivir
3.
Experimental & Molecular Medicine ; : 575-587, 2005.
Article in English | WPRIM | ID: wpr-191493

ABSTRACT

Rac1 and Rac2 are essential for the control of oxidative burst catalyzed by NADPH oxidase. It was also documented that Rho is associated with the superoxide burst reaction during phagocytosis of serum- (SOZ) and IgG-opsonized zymosan particles (IOZ). In this study, we attempted to reveal the signal pathway components in the superoxide formation regulated by Rho GTPase. Tat-C3 blocked superoxide production, suggesting that RhoA is essentially involved in superoxide formation during phagocytosis of SOZ. Conversely SOZ activated both RhoA and Rac1/2. Inhibition of RhoA-activated kinase (ROCK), an important downstream effector of RhoA, by Y27632 and myosin light chain kinase (MLCK) by ML-7 abrogated superoxide production by SOZ. Extracellular signaling-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) were activated during phagocytosis of SOZ, and Tat-C3 and SB203580 reduced ERK1/2 and p38 MAPK activation, suggesting that RhoA and p38 MAPK may be upstream regulators of ERK1/2. Inhibition of ERK1/2, p38 MAPK, phosphatidyl inositol 3-kinase did not block translocation of RhoA to membranes, suggesting that RhoA is upstream to these kinases. Inhibition of RhoA by Tat-C3 blocked phosphorylation of p47 PHOX. Taken together, RhoA, ROCK, p38MAPK, ERK1/2, and p47 PHOX may be subsequently activated, leading to activation of NADPH oxidase to produce superoxide.


Subject(s)
Animals , Mice , Cell Line , Cell Membrane , Cytosol , Enzyme Inhibitors/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Macrophage-1 Antigen/pharmacology , Macrophages/drug effects , Myosin-Light-Chain Kinase/metabolism , Opsonin Proteins/blood , Phagocytosis , Protein Transport , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Superoxides/metabolism , Tetradecanoylphorbol Acetate/pharmacology , Zymosan/blood , p38 Mitogen-Activated Protein Kinases/metabolism , rhoA GTP-Binding Protein/antagonists & inhibitors
4.
Experimental & Molecular Medicine ; : 211-221, 2003.
Article in English | WPRIM | ID: wpr-10309

ABSTRACT

Phagocytosis of serum- and IgG-opsonized zymosan (SOZ and IOZ, respectively) particles into J774A.1 macrophages induced apoptosis of the cells, accompanied by the expression of p21(WAF1), one of cyclin-dependent protein kinase (CDK) inhibitors. Furthermore, phagocytosis of SOZ and IOZ particles into macophages induced superoxide formation. Tat-superoxide dismutase (SOD), which is readily transduced into the cells using Tat-domain, protected the cells from the apoptosis induced by phagocytosis of SOZ and IOZ particles. lipopolysaccharide (LPS)/interferon-gamma (IFN-gamma) also caused the apoptosis of the cells. However, Tat-SOD could not protect the cells from LPS/IFN-gamma induced apoptosis, suggesting that apoptosis mechanisms involved are different from each other. In the present study, we determined the amounts of nitric oxide (NO) produced by SOZ, IOZ, and LPS/IFN-gamma, and found that SOZ and IOZ did not induce the generation of NO in macrophages, whereas LPS/ IFN-gamma did. The apoptosis due to phagocytosis was accompanied with the release of cytochrome c from mitochondrial membrane to cytosolic fraction. Furthermore, SOZ and IOZ induced the cleavage of procasapase-3 (35 kDa) to give rise to an active caspase-3 (20 kDa), which was blocked by Tat- SOD but not by 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), a scavenger of NO. On the other hand, LPS/IFN-gamma caused the activation of procaspase-3, which was blocked by PTIO but not by Tat-SOD. Taken together, phagocytosis of SOZ and IOZ particles induced apoptosis through superoxide but not NO in macrophages, accompanied with the release of cytochrome c and the activation of caspase-3.


Subject(s)
Apoptosis/immunology , Caspases/metabolism , Cell Line , Cyclins/biosynthesis , Cytochromes c/metabolism , Immunoglobulin G/immunology , Interferon-gamma/pharmacology , Lipopolysaccharides/pharmacology , Macrophages/immunology , Nitric Oxide/metabolism , Opsonin Proteins/immunology , Phagocytosis/physiology , Superoxide Dismutase/metabolism , Superoxides/metabolism , Zymosan
5.
Experimental & Molecular Medicine ; : 434-443, 2002.
Article in English | WPRIM | ID: wpr-13045

ABSTRACT

The release of neurotransmitter is regulated in the processes of membrane docking and membrane fusion between synaptic vesicles and presynaptic plasma membranes. Synaptic vesicles contain a diverse set of proteins that participate in these processes. Small GTP-binding proteins exist in the synaptic vesicles and are suggested to play roles for the regulation of neurotransmitter release. We have examined a possible role of GTP-binding proteins in the regulation of protein phosphorylation in the synaptic vesicles. GTPgammaS stimulated the phosphorylation of 46 kappa Da protein (p46) with pI value of 5.0-5.2, but GDPbetaS did not. The p46 was identified as protein interacting with C-kinase 1 (PICK-1) by MALDI-TOF mass spectroscopy analysis, and anti-PICK-1 antibody recognized the p46 spot on 2-dimensional gel electrophoresis. Rab guanine nucleotide dissociation inhibitor (RabGDI), which dissociates Rab proteins from SVs, did not affect phosphorylation of p46. Ca2+/ calmodulin (CaM), which causes the small GTP- binding proteins like Rab3A and RalA to dissociate from the membranes and stimulates CaM- dependnet protein kinase(s) and phosphatase, strongly stimulate the phosphorylation of p46 in the presence of cyclosporin A and cyclophylin. However, RhoGDI, which dissociates Rho proteins from membranes, reduced the phosphorylation of p46 to the extent of about 50%. These results support that p46 was PICK-1, and its phosphorylation was stimulated by GTP and Ca2+/CaM directly or indirectly through GTP-binding protein(s) and Ca2+/CaM effector protein(s). The phosphorylation of p46 (PICK-1) by GTP and Ca2+/CaM may be important for the regulation of transporters and neurosecretion.


Subject(s)
Animals , Rats , Calcium/metabolism , Calmodulin/metabolism , Carrier Proteins/chemistry , Guanine Nucleotide Dissociation Inhibitors/metabolism , Guanosine Triphosphate/metabolism , Molecular Weight , Monomeric GTP-Binding Proteins/metabolism , Phosphorylation/drug effects , Recombinant Fusion Proteins/chemistry , Synaptic Membranes/chemistry , Synaptic Vesicles/chemistry
6.
Experimental & Molecular Medicine ; : 220-225, 2001.
Article in English | WPRIM | ID: wpr-144649

ABSTRACT

Low molecular weight GTP-binding proteins are molecular switches that are believed to play pivotal roles in cell growth, differentiation, cytoskeletal organization, and vesicular trafficking. Rab proteins are key players in the regulation of vesicular transport, while Rho family members control actin-dependent cell functions, i.e. the regulation of cytoskeletal organization in response to extracelluar growth factors and in dendritic neuron development. In this study, we have examined the regulation of small GTP-binding proteins that are implicated in neurosecretion and differentiation of neuron during ageing processes. Comparison of small GTP-binding proteins from the synaptosome and crude synaptic vesicles (LP2 membranes) of 2 months and 20 months old rat brain respectively showed no difference in the level of Rab family proteins (Rab3A and Rab5A). However, Rho family proteins such as RhoA and Cdc42 were elevated in LP2 membranes of the aged brain. The dissociation of Rab3A by Ca2+/calmodulin (CaM) from SV membranes was not changed during aging. Ca2+/CaM stimulated phosphorylation of the 22 and 55-kDa proteins in SV membranes from the aged rat brain, and inhibited phosporylation of 30-kDa proteins. GTPgammaS inhibited phosphorylation of the 100-kDa proteins and stimulated phosphorylation of the 70 kDa in LP2 membranes from both the young and aged rat brains, whereas GDPbetaS caused just the opposite reaction. These results suggest that protein phosphorylation and regulation of Rho family GTPases in rat brain appears to be altered during ageing processes.


Subject(s)
Cattle , Rats , Aging , Animals , Brain/metabolism , Calcium/pharmacology , Comparative Study , GTP-Binding Proteins/metabolism , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Molecular Weight , Phosphorylation/drug effects , Rats, Sprague-Dawley , Synaptic Membranes/metabolism , Synaptosomes/metabolism , cdc42 GTP-Binding Protein/biosynthesis , rab3A GTP-Binding Protein/metabolism , rab5 GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein/biosynthesis
7.
Experimental & Molecular Medicine ; : 220-225, 2001.
Article in English | WPRIM | ID: wpr-144637

ABSTRACT

Low molecular weight GTP-binding proteins are molecular switches that are believed to play pivotal roles in cell growth, differentiation, cytoskeletal organization, and vesicular trafficking. Rab proteins are key players in the regulation of vesicular transport, while Rho family members control actin-dependent cell functions, i.e. the regulation of cytoskeletal organization in response to extracelluar growth factors and in dendritic neuron development. In this study, we have examined the regulation of small GTP-binding proteins that are implicated in neurosecretion and differentiation of neuron during ageing processes. Comparison of small GTP-binding proteins from the synaptosome and crude synaptic vesicles (LP2 membranes) of 2 months and 20 months old rat brain respectively showed no difference in the level of Rab family proteins (Rab3A and Rab5A). However, Rho family proteins such as RhoA and Cdc42 were elevated in LP2 membranes of the aged brain. The dissociation of Rab3A by Ca2+/calmodulin (CaM) from SV membranes was not changed during aging. Ca2+/CaM stimulated phosphorylation of the 22 and 55-kDa proteins in SV membranes from the aged rat brain, and inhibited phosporylation of 30-kDa proteins. GTPgammaS inhibited phosphorylation of the 100-kDa proteins and stimulated phosphorylation of the 70 kDa in LP2 membranes from both the young and aged rat brains, whereas GDPbetaS caused just the opposite reaction. These results suggest that protein phosphorylation and regulation of Rho family GTPases in rat brain appears to be altered during ageing processes.


Subject(s)
Cattle , Rats , Aging , Animals , Brain/metabolism , Calcium/pharmacology , Comparative Study , GTP-Binding Proteins/metabolism , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Molecular Weight , Phosphorylation/drug effects , Rats, Sprague-Dawley , Synaptic Membranes/metabolism , Synaptosomes/metabolism , cdc42 GTP-Binding Protein/biosynthesis , rab3A GTP-Binding Protein/metabolism , rab5 GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL